Universal Testing Machine
Industry Solutions
EV Batteries Mar 04, 2023


Solutions for EV Battery Cells, Modules, and Packs

As the global automotive industry trends towards electrification, battery manufacturers are under tremendous pressure to innovate and grow faster than ever before. Sansi Test engineers are working closely with industry leaders to meet the growing demand for smaller, lighter, more powerful batteries.


Separator films are a critical part of lithium-ion batteries as well as other liquid electrolyte batteries. The polymers used for these films must be strong enough to withstand the winding operation during assembly as well as plating of lithium on the anode in an uneven manner due to extensive use. Safer and stronger separator material more effectively prevents contact between the anode and cathode, while thinner material helps reduce the weight of each battery and improve energy density.



One of the most common failure modes in batteries is caused when the coating of electrode material cracks or delaminates from the current collector. This cracking or delaminating is typically caused by the constant charging and discharging of a battery as well as the mechanical loading when in use. It is critical to understand the electrode adhesion strength and longevity to ensure a battery does not fail before the end of its predicted life cycle.



Aluminum and copper foil are used as current collectors in batteries, and are traditionally needed in large volumes. As the industry strives to use minimal amounts of material to achieve optimal energy density of each battery, it is critical to understand the mechanical properties of each foil in order to ensure the battery's safety and longevity. As foil becomes longer, thinner, and wider, improved technology is required to address the wrinkling and tearing that may come along with it. Validating and maintaining the mechanical properties of this material is critical for optimizing battery production.



Lithium-ion and other liquid electrolyte batteries require countless welds between electrodes, tabs, casings, and cells. Understanding the most common failure modes and strength of each weld is critical for determining the life of a battery. Each weld must withstand the mechanical loading that comes with being inside a vehicle or device, which can wear on the weld over time. Electric vehicles, for instance, are constantly moving and vibrating, and this must be accounted for in the design and quality of a weld.

leave message

Request a free quote Today
If you are interested in our products and want to know more details, please leave a message here, we will reply you as soon as we can.
see more

Our hours

Mon 11/21 - Wed 11/23: 9 AM - 8 PMThu 11/24: closed - Happy Thanksgiving!Fri 11/25: 8 AM - 10 PMSat 11/26 - Sun 11/27: 10 AM - 9 PM(all hours are Eastern Time)
Lunes 11/21 a miercoles 11/23: 9 AM - 7 PMJueves 11/24: seradosViernes 11/25: 9 AM - 10 PMSábado 11/26 a domingo 11/27: 10 AM - 7 PM(hora del Este) Estamos disponibles 6 días a la semana
Contact us #
+86 -18352836810